3D-2D Coordinate Transforms
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3D to 2D Perspective Transformation

* We can project 3D points onto 2D with 1 0 0 O X X
a matrix multiplication 010 0 , _|y
0 010 Z
1
e Assuming that the 2D pointis in
. . X X1z
homogeneous coordinates, we divide N
through by the last element X=\Y |=|Y/Z
Z 1
e Recall perspective projection (x = f X/Z,
y =fY/Z), so
X
X, f 0 0Y1 0 0 O v
X, =0 f 00 1 0 O S| X=X X5, Y =X, X,
X3 O O 1 O O 1 O 1 If f=1, we sometimes call (x,y)

“normalized image coordinates”
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Intrinsic Camera Matrix

e We can capture all the intrinsic camera parameters in a matrix K

*  Recall that if f is the focal length

f /SX 0 Cx fx 0 Cx in mm, then sx,sy is the size of a
K=| 0 fls, ¢, | or K= 0 f, ¢ pixel in mm
0 0 1 0 0 1 . A_Iternat|vely, can just use fx,fy in
pixels

e  The optical center of the image is
at pixel location cx, cy

e So to project 3D points in camera coordinates onto the pixel image

C

X
X, 1 0 0 O v X X, [ Xq
X, |=K|0 1 0 O S| Y= X, /X,
X, 0 010 . 1 1
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Extrinsic Camera Matrix

If 3D points are in world coordinates, we first need to transform them to
camera coordinates

V(\?R CtWorg W P

CP: CHWP:
! 0 1

We can write this as an extrinsic camera matrix, that does the rotation and
translation, then a projection from 3D to 2D

c C
My = (W R "ty ) =\ T Ny b

Also note

Mext:(vf/:R CtWorg):(vf/:R _Vfl:thCorg)
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Complete Perspective Projection

e Projection of a 3D point WP in the world to a point in the
pixel image (x,..,y, )

"X
X
' Y
X2 :KMext Z Xim:X1/X3’ yim:XZ/XS
X
’ 1
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Example

e |f the robot in the earlier example had a camera instead of a
range sensor, what pixel would P project to?

e Assume f=512 pix, (cx,cy)=(256,256)

'3 '@-ﬂ;

= KM, F
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HVW=[1 0 0 5;
0-1 0 O0;
0 0-1 1;
0 0 0 1]
HSVv=[0 0 1 1;
1 0 0 O;
0 1 0 -2;
0 0 0 1]

PW=T[16; 0; -1; 1];

K=[512 0 256;
0 512 256;
0 0 117

RCV=[0 0 1;

1 0 O0;

0 1 0]:
RVC=RCV;
RWV=[1L 0 o0

0-1 0;
0 0 -11";
RWC=RVC™>RWV;

tCorg_V = [1; 0; -2; 1];

tCorg W = H_V_W * tCorg_V;
tCorg_ W = tCorg_W(1:3);

Mext = [ R_W_C -R_W_C * tCorg_W ]:

K * Mext * P_W;
p 7/ p@

T ©
I
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Weak Perspective

 Sometimes it is better to use an approximation to perspective projection,
called “weak” projection or scaled orthography

* This works if the average depth Z,,, to an object is much larger than the
variation in depth within the object
— Instead of x=fX/Z y=fY/Z

— usex=fX/Z,,,V=fY2,,

X
X, f, 0 ¢, Y1 0 0 O v X X, [ Xq
X,|=|0 f, ¢ |0 10 O S| Y= X, /X,
X, o 0 1)0 0 0 Z, . 1 1

* This makes the image coordinates (x,y) a linear function of the 3D
coordinates (X,Y,2)
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Special Case

e Small planar patch
— Often we want to track a small patch on an object

— We want to know how the image of that patch transforms as the object
rotates

e Assume
— Size of patch small compared to distance -> weak perspective
— Rotation is small -> small angle approximation
— Patch is planar

e It can be shown that the patch undergoes affine transformation
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